An unsupervised cyberattack detection scheme for AC microgrids using Gaussian process regression and one‐class support vector machine anomaly detection
نویسندگان
چکیده
This paper addresses the cybersecurity of hierarchical control AC microgrids with distributed secondary control. The false data injection (FDI) cyberattack is assumed to alter operating frequency inverter-based generators (DGs) in an islanded microgrid. For consisting grid-forming inverters a manner, attack on one DG deteriorates not only corresponding but also other DGs that receive corrupted information via communication network. To this end, FDI detection algorithm based combination Gaussian process regression and one-class support vector machine (OC-SVM) anomaly introduced. unsupervised sense it does require labelled abnormal for training which difficult collect. model predicts response DG, its prediction error estimated variances provide input OC-SVM detector. returns enhanced performance than standalone OC-SVM. proposed detector trained tested collected from 4 microgrid test validated both simulation hardware-in-the-loop testbeds.
منابع مشابه
Anomaly Detection using Support Vector Machine
Support vector machine are among the most well known supervised anomaly detection technique, which are very efficient in handling large and high dimensional dataset. SVM, a powerful machine method developed from statistical learning and has made significant achievement in some field. This Technique does not suffer the limitations of data dimensionality and limited samples. In this present study...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولOutlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator
The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...
متن کاملSupport vector regression for anomaly detection from measurement histories
This research focuses on the analysis of measurements from distributed sensing of structures. The premise is that ambient temperature variations, and hence the temperature distribution across the structure, have a strong correlation with structural response and that this relationship could be exploited for anomaly detection. Specifically, this research first investigates whether support vector ...
متن کاملRobust Anomaly Detection Using Support Vector Machines
Using the 1998 DARPA BSM data set collected at MIT’s Lincoln Labs to study intrusion detection systems, the performance of robust support vector machines (RSVMs) was compared with that of conventional support vector machines and nearest neighbor classifiers in separating normal usage profiles from intrusive profiles of computer programs. The results indicate the superiority of RSVMs not only in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Iet Renewable Power Generation
سال: 2023
ISSN: ['1752-1424', '1752-1416']
DOI: https://doi.org/10.1049/rpg2.12753